top of page

Biotechnician 1A: Introduction

생명공학 생명공학자
Career Pathway 과정 단위

Unit 1: Introduction to Biotechnology

What do cloned pets, cancer-seeking nanorobots, drug-producing produce, spider goats, lab-grown organs, meatless meat, and explosive-eating microbes all have in common? They are all produced through biotechnology! You will be amazed at all the ways that biotechnology has impacted your life and the world around you. Let’s take some time to learn what biotechnology is, how it developed, and where it might take us in the future. After considering an overview of the many fields and careers available in biotechnology, you’ll be able to make some informed choices about which area interests you most.

Unit 2: Biotechnology Laboratory Safety

What do virus hunters, biological weapons manufacturers, and biotechnicians all have in common? Unfortunately, they share the risk of potentially contracting a deadly disease when they go to work. Sound scary? Well, if you are well trained and commit to following proper laboratory safety guidelines and regulations, working in a biological laboratory -even one with harmful or deadly organisms – should be perfectly safe. So, what are important safety guidelines, regulations, practices, and procedures you need to know? Let’s jump in and find out.

Unit 3: Biosafety & Sterility

Pathogens, disease, germs, bugs, microorganisms, viruses, fungus, bacteria . . . no matter what you call these organisms, biotechnologists work with them, study them, and even try to prevent them from contaminating their experiments. How do they do this safely? How can they mitigate the harm microorganisms can cause in research? Following important protocols and techniques while performing their work is key. But, what protocols and techniques must they follow? Here, we’ll take a closer look to find out.

Unit 4: Biotechnology by the Numbers

How big, or rather small, is biotechnology? How big is a strand of DNA, an enzyme, or an antibody? How do you work with the raw materials of biotechnology at such a small scale? Here, you will learn how to use the standard equipment and units found in nearly every biotechnology-based laboratory; you will also be able to perform important calculations and accurately use that equipment when you step into a research laboratory for the first time.

Unit 5: The Molecule of Life

Think for a moment about all the different types of life that exist on our planet. It might be surprising to know that the basic blueprint for this life is found in a tiny molecule, DNA. Here, you will learn how mankind discovered DNA, how it is structured, and how this new knowledge was applied in science. You’ll get a chance to zero in on this amazing molecule, learning how to identify some of the specific information it uncovers.

Unit 6: Gene Expression

Our bodies must constantly respond to changing conditions. Something as simple as eating a meal poses a potentially dangerous condition if blood glucose concentrations are not returned to normal shortly thereafter with the help of the protein, insulin. In fact, proteins are involved in nearly every cell process in the body. They give us our traits, serve as a source of energy, perform cellular repair, form blood cells, allow for healthy growth and development, and even play a role in our immune system. Here, we’ll learn how proteins are made by the cell, the structure and function of these proteins, and how scientists study and use them in research.

Unit 7: Genomics & Precision Medicine

Are you interested in the past? Have you ever wondered where your ancestors came from? How about the future? Do you wonder if you will live for 100 years or develop a fatal disease right in the prime of your life? The answers to some of these questions can be found within your own DNA. Once scientists discovered the important function of DNA, they set about dissecting and decoding it. What could this hidden cache of information reveal to us? How could we use the information to understand our own health and improve the way we treat disease? Let’s find out.

Unit 8: Experimental Design

Experimental design is at the heart of all scientific disciplines. The field of biotechnology has made so many advancements and great strides due to scientists asking important questions, setting up sound experimental designs to test their questions, and making sense of the data they collect. Here, you will learn about and practice the scientific method as you ask and use bioinformatics to answer a meaningful question related to DNA barcoding technology.

유용한 링크

우리를 따르십시오!

  • BEST Academy Facebook Page
  • BEST Academy Instagram Page
  • BEST Academy Twitter Handle
  • BEST Academy YouTube Channel

연락하다

베스트 아카데미

1704 케이프 혼

줄리안, CA 92036

info@bestacademycs.com

833-619-베스트 (2378)

팩스: 619-359-8977

정보 요청

이 웹사이트를 모든 사용자가 액세스할 수 있도록 하는 것이 Brookfield Engineering Science Technology Academy의 목표입니다. 당신은 우리의 접근성 성명을 볼 수 있습니다여기.  제발연락하다접근성 문제에 대한 BEST 아카데미asoriano@bestacademycs.com

BEST Academy는 평등한 기회를 제공하는 고용주/프로그램이며 적극적인 비차별 프로그램에 전념하고 있습니다. BEST Academy는 실제 또는 인지된 혈통, 연령, 피부색, 성별 표현, 국적, 인종 또는 민족, 성별, 성적 취향, 또는 이러한 실제 중 하나 이상을 가진 개인 또는 그룹과의 연관성에 근거한 차별, 괴롭힘, 위협 및 따돌림을 금지합니다. 또는 인지된 특성. 

© 2022 브룩필드 엔지니어링 과학 기술 아카데미. 판권 소유.

에서 디자인한 웹사이트조형교육

bottom of page